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1. Introduction

This paper considers two closely related, but distinct, subjects. We commence
with the discrete moving average process

*0

j=-0o

where (Zt),ez is a noise sequence of iid random variables (r.v.'s) having not nec-

essarily a finite variance. Two preceding papers by Kliippelberg and Mikosch

(1991), (1992), studied the asymptotic behaviour of periodogram-type estima-

tors for the process (X,),ez under the condition that Z, is in the domain of

normal attraction of an a-stable law for some a E (0, 2]. In Kluippelberg and

Mikosch (1992) it was shown that the normalized periodograrn
n ~2/

I ( = E X'2 - r<A <r,
t=1 I -t=1

converges in distribution to

iJ'(A)J 2 02(\) + p2(A)
1p2 72

where t(A) = 0j e-iAJ is the transfer function, 2 O J 2, and the
J=-00

vector (a(,(),1#(A),92) has a mixed stable distribut;,,n such that (a(A),,/(A))

are jointly a-stable and y2 is positive a/2-stable. Furthermore, the vector

of different periodogram ordinates I ( converges weakly, and

the components of the limit vector have exponentialy fast decreasing tails and

are uncorrelated. Smoothed versions of the normalized periodogram were also

studied, and their weak convergence to the normalized power transfer function

Il(A)[2/iV 2 established.
In this paper we weaken the above assumptions on Z, considerably: we only

require that E JZ1 Ia < oo for some d > 0 and that E satisfies some= 1 n > 1

tightness condition. Under such general conditions One cannot expect to de-

rive distributional limits for Inx(A); but we prove weak convergence for the

smoothed normalized periodogram to 11,0\)12/ 02 for a large class of smooth-

ing filters (Section 3). In Section 4 we obtain under the same mild condi-
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tions on the noise variables weak convergence of the sample autocorrelations

t=1 /t= )= j--00

In Section 5 we turn to the second and main subject of this paper: parameter
estimation for an ARMA(p, q)-process of the form

X, - i0lX't- I- -..- iop X(_' = At +0 #Ize I +.. +9 ofze_

for fixed, known values of p and q. Adapting an idea of Whittle (1953) we con-
struct a weakly consistent estimator /, of the parameter vector 6 = (91i,..., jp,
1,... , 9e)T. Moreover, if Z, belongs to the domain of normal attraction of an

&-stable law, a E (0,2), the rate of convergence is (n/logn)1 /*. The proofs of
the results of Sections 3-5 are given in Sections 6-9. In the concluding Section 10
we discuss how to use our estimator in practice, and give the results of a small
simulation study which indicate that the estimator seems to perform, in prac-
tice, as good as the well known MLE estimators in the corresponding model
with Gaussian innovations.

2. Assumptions and notation

We consider the moving average process (Xt)t 5 z defined by (1.1). To formulate
the conditions on the noise (Zt),,z we introduce the following functions for
z>0

G(x) = IZz )

SQTjALIyT •N•PECTED 5 K(s) = x- E I1(4 <z)
Q(z) = G(z) + K(c) = E [IA (-1 Z)2]

Accesio• For •Since Q is strictly decreasing and continuous on (0, co) the identity

NTIS CRA&I Q(a.,)=-, nEX, (2.1)
DTIC TAB [l n'
Unannounced [0 defines a sequence of positive numbers ant such that a. T oo as n -- co. Fur-
Justification ....................... thermore, define

ft

By ............................... 7n,z =a;2 EZ,2, nEAK. (2.2)
Distribution I

Availability Cotes

Avail and Ior
Dist Special

A-
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For the moving average process as in (1.1) we introduce the following assump-

tions: There exists some d > 0 such that

(Al) EIZhId <o;

(A2) Ji I 0iI' < oo for 6= lAd;
j=-00

(A3) n/a26l-0, n--.oo, for 6=lAd;

(A4) lim limsup P (',yz 5 z) = 0.
X-0O n-.*O0

Remarks. 1) (Al) and (A2) imply absolute a.s. convergence of the series (1.1)

for every t E Z. This is a consequence of the three-series theorem.

2) (A2) is obviously satisfied for every ARMA(p, q)-process. In this case the Oj

decrease exponentially.

3) The conditions E Z2 < 00, (A3) and (A4) cannot hold together, since (A3)

and the SLLN imply that 7y,z '_,,. 0 contradicting (A4).

4) (A4) is a stochastic compactness condition on 7,2z. A necessary and sufficient

condition for 'nz to be stochastically compact is
liminf K(z)/G(z) > 0.

XCOa

[e.g. Mailer (1981)]. Furthermore, if y2,z is stochastically compact, then there

exists some constant c > 0 such that for all n E X

"P(,z < z)_ •cz, z>0,

[Griffin (1983)] which implies (A4).

A natural class of noise variables to satisfy conditions (Al), (A3) and (A4)

is the domain of attraction of an a-stable random variable, which we denote

by DA(a). For the definition and properties of a-stable r.v.'s, their domain of

attraction and regularly and slowly varying functions see e.g. Feller (1971) or

Bingham, Goldie and Teugels (1987).

Now if Zi E DA(a) for some a E (0, 2), then Z2 E DA(a/2) and

lim G(x)/K(z) = (4 - a)/ar.

Then G is a regularly varying function and the norming constants in (2.2) can

be chosen as
a= = G0- (n-') =-inf {z;G(z) < n-'}
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i.e. G- is the generalized inverse of G. This implies that a3 = n21*L(n) where L

is a slowly varying function and y,2 -d #,2 for some positive a/2-stable r.v. y2.

Furthermore, E IZI" < oo for d < a. In the following lemma we summarize

these relations.

Lemma 2.1. Suppose Z1 E DA(a) for some a E (0,2), then (A I), (AS) and

(A4) hold for some d > 0 and a. -= n21OL(n) where L is a slowl varying func-

tion. 0

The following notation will be used throughout the paper: For any sequence of

r.v.'s (At) 1 ez and a sequence of positive constants (a,),e#r we introduce

I'

= 2A,

9=1

nA(4%) = a; 2  Ate' , AE(--,-],

At = a-' At/l n,A= At A,)n )'
.,A (A) = ln,.A(A)/ 72,A= At e-"' , v]1

3. Consistency of the smoothed normalized pe-

riodogram

Kliippelberg and Mikosch (1991) considered Z, in the domain of normal attrac-

tion of an a-stable r.v. (Zi E DNA(a)), a E (0, 2); this means that Zi E DA(a)
with norming constants a2 -= n2/. In that case both the periodogram ln,X (A)

and the normalized periodogram T,.x(A) converge in distribution for every

A E (-wr, w]. A common technique to obtain consistency is to apply some smooth-

ing operation, and for In,x(A) this provides a consistent estimator for the nor-

malized power transfer function I[(A))12 /V2.
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Now we shall show consistency of the smoothed normalized periodograrn

T,,x(A)= W w,(k) T,,X (Ak)

under leas restrictive conditions. Here Wn(k) are nonnegative weights at points

Aj = A + k/n, Ik1 <i n, n E A(, satisfying

m = Mn -+oo, M, 1/n-.O, n--,oo, (3.1a)

W,(k) = W.(-k), Ikl < m, (3.1b)

WnM(k) = 1, (3.1c)

SWn,(k) = o(1), n-- oo. (3.1d)

If Ah = A + k/n V (-ir,.v] the term Tn,x (Ak) in T!,x(A) will be evaluated by
defining "Inx to have period 2r. The same convention will be used to define

0;(A), A 0 (-ir, r].

Theorem 3.1. Suppose (Xt),ez satisJies (AI)-(A4) and (3.1) holds. Then

.x(,A) -e 14(A)12/42  n -. oo. 0

4. Consistency of the sample autocorrelation

function

For h E Z define

jn,x(h) = 7n,x(h)/h,x
j(h) = -f(h)/,fi

where

n-lhj

"7t,x(h) = a; 2 
1 XgX, t+lh
t=1

-7(h) = O j'o4 'j+lhl.
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Obviously, if E Z? < oo, Sn,x(h) is a consistent estimator of the autocorrelation
function 5(h) of (Xs)tez. One of the results of Davis and Resnick (1986) is the

following: For Zi E DNA(a), a E (0, 2), Z, symmetric

(n/ logn) "& (j,.x(h) - j(h))) = .

( + h) - 5(i - h) - 25(j) 5(h)) Yi h.1)..,m(.

where Y0, Y 1, Y2 ,... are independent r.v.'s, Yo is positive a/2-stable and (Y,)j g

are iid standard a-stable. (4.1) implies that j.,x(h) is weakly consistent with
limit 5(h) and the rate of convergence is faster than in the finite variance case.

Under our more general conditions (A1)-(A4) a precise result as (4.1) cannot

be expected but we prove weak consistency.

Proposition 4.1. Suppose (Xt),,z satisfies (AI)-A4), then

i.,x(h) -P #(h), hEN, n--eoo. 0

As shown in the appendix by replacing conditions (A3) and (A4) by a slightly
more restrictive condition it is possible to obtain a.s. convergence of 5,,x(h) to

5(h) along some known subsequence. In particular, this condition is satisfied

for Zi E DA(a), a E (0,2). Moreover, we give an example to show that a.s.

convergence need not hold in general under (A1)-(A4).

5. Parameter estimation for ARMA(p, q)

processes

We consider a causal invertible ARMA(p,q) process (Xt),Ez satisfying for ev-

ery t the ARMA equations

Xt - il Xt-- ...- x Vo Xt, = z + 1 z,- 1 +... + eq Zt-q

for iid (Zt), 6z. Denote

i(z) = 1-iouz -...- •oPz'
e(z) = lOz .. Oz
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and
, = (P ,... ,. p I P o l... ,lot)T .

Then in the infinite moving average representaion of our process we have that
P(A) = jp(e-'1)IO(e-'%).

We introduce the parameter set

C = {•1E IP+ ;wo,:A 0.,# 0 0,Po(z) and O(z) have no common zeros,

wp(z)o(z)#O forIz<x1}.

Denote by g(A, 16) the power transfer function corresponding to 6 E C; i.e.

0 p(e-') I'

and define

2 = (,x(6) dA, &.2 =2#x
(• •g(AA. g0(A; )

where the sum is taken over all Fourier frequencies

S= 2 j (-!,w ].

n

Clearly, as n --. oo, the sum and the integral should converge to the same limit.

Suppose A0 E C is the true, but unknown parameter vector. Then two natural
estimators of 60 are given by

13,=argmin an23, argmin a,2(#).
DEC PEC

Given the assumption that o'.(/6) - an(#l), it seems reasonable to assume,
as is in fact the case, that 6. - #n, and that therefore the two estimators are
asymptotically equivalent. It is clear that, in practice, On is the only applicable

estimator, since the integral defining o'a(/6) will always have to be evaluated
by an approximating sum. Nevertheless, throughout this paper we shall give
proofs of convergence for the estimator based on o'(/3), since here the notation

is much lighter.
The choice of these estimators is motivated by the fact that the function

I g(A,
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has its absolute minimum at 0 = fo in C. [cf. Brockwell and Davis (1991),

Proposition 10.8.1.]. Moreover, by Theorem 3.1., n.,x(A) can be applied to

estimate g (A•,0)/12 (po), where 02 (AD) is the quantity 02 corresponding to f 0 .

For Gaussian (Xt),Ez the estimator & is closely related to least squares and

maximum likelihood estimators and it is a standard estimator for ARMA pro-

cesses with finite variance. The idea goes back to Whittle (1953), see also Dzha-

paridze (1986), Fox and Taqqu (1986) and Dahlhaus (1989). It is well-known

that in the classical case P. is consistent and asymptotically normal [cf. Brock-

well and Davis (1991)]. We show that P. is also for ARMA processes with

infinite variance a weakly consistent estimator for the true parameter vector 1o.

Theorem 5.1. Suppose (Xt)iEz is a causal invertible ARMA (p, q) process and

conditions (A1)-(A4) hold. Then

f # o and a (On) £-2w ( , n-oo.

Furthermore, the same limit relationships hold also for &n and &2. 0

As shown in the Appendix, it is possible to obtain a.s. convergence along

some specified subsequence under more restrictive conditions which hold e.g.

for Z, E DA(a), a E (0, 2).

For ARMA(p, q) processes with finite variance f,, is asymptotically normal

with rate of convergence of order n-1 / 2. An analogous result gives in our case

a rate of convergence of order (n/log n)-'/*:i.e. the convergence is considerably

faster (since a < 2).

To obtain a representation of the limit vector we restrict ourselves to sym-

metric Z, E DNA(a) for a E (0, 2) such that
n

n-d E Z, - Y (5.1)
t=1

where Y is a-stable.

Recall that a random variable Y is said to have a stable distribution (Y A

S. (o, p,)) if there are parameters 0 < a < 2, a > 0, -1 < ft 1, and p real

such that its characteristic function has the form:

- exp {l-O,0I9 (1- if(signe)tan MI) + ipO} ifa: 1,
E (e')= exp {-olI9 l (I + -(sign ) In 1e0) + ipO} if a=.
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If 0 = p = 0 then Y is symmetric and we say that Y has a "symmetric a stable"

distribution, denoted by Y I SaS.

For later use, let C. be the constant defined by

C = r(2-if#a (5.2)
if a 1.

Theorem 5.2. Suppose (Xt),ez is an ARMA (p, q) process and (Z,)iEz are iid

symmetric such that (5.1) holds. Then
"(n ' I a 1 0 _ Y0. 5 3

]o-• / ~ (fin - P0) " 41r W - (,60) o =

where YO, Y 1, Y2 ,... are independent r.v. 's, Yo 2= Sa/2 (, 1, 0) is positive

a/2-stable, (Y,),,JA, are aid SoS with scale parameter o- = CIVO, W- 1 (o) is

the inverse of the matrix

W 0) P Fn lg (A, 00 ) 0F In g (A,fo) T A

and, for k E Ml', bk is the vector

b 1 = I W C_ 80) (A, 00) d".

Furthermore, (5.3) holds also with fi replaced by #, 0D

The limit vector in (5.3) is the ratio of an &-stable (p + q)-dimensional vector

over a positive a/2-stable r.v. It is not difficult to see that for AR(p) processes

&, is just the formal analogue of the Yule-Walker estimates. Their weak limit

behaviour was derived by Davis and Resnick (1986) using time domain methods.

In closing we note that "more rapid than Gaussian" rates of convergence for

estimators in heavy tailed problems seems to be the norm rather than the excep-

tion. For example, Feigin and Resnick (1992, 1993) study parameter estimation
for autoregressive processes with positive, heavy tailed innovations, and obtain

rates of convergence for their estimator of the same order as ours, but with-

out the logarithmic term. Their estimators, however, are different to ours both

in spirit and detail, and involve the numerical solution of a non-trivial linear

programming problem.
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6. Auxiliary results

We shall frequently make use of the following decomposition of the periodogram.

Its proof is given in Proposition 2.1 of Kliippelberg and Mikosch (1991).

Proposition 6.1. Suppose (Xt),Ez is a moving average process as in (1.1) and

(A.1), (A.2) are satisfied. Then

n,x(A) = IN(A)1 2 Iu,z(A) + R,(A), -w < A < r

where

R.(A) = O(A) J.(_) Y.(-_A) + (-_A) J.(-_A) Y.(A) + IY.(X)12

Jn() = I Zt e-'

Yn (A) = a- o e-'j Un,(A)
j=-oo

Un,(A) = E z, e-'x- Z, e-'x. o
t=l-j t=1

The following Lemma is similar to Davis and Resnick (1986), p. 549, see also

Lemma 5.1 of Kluppelberg and Mikosch (1992).

Lemma 6.2. Suppose (X,),Ez satisfies (AI)-(A4), then

7n = 2 7,z(1 + op(l)), n oo

Proof.
nt oo n

7n oXE E 2 j+anZj
t=1 j=-oo t=1 itj

=:V1 + V2 .

Then the triangle inequality gives

EIV21' <a26 ) EIZaZ2I' -n 0
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and

8/2

j=-oo 0 =1

< 2a;' E I', 6 Iil EIZi 6 -. O 0

Lemma 6.3. Let (Zt)tez be a sequence of sid r.v. 's. Then the following rela-

tions hold for n -- oo:

(a)

1 22 2 = 0 (n-2). (6.1a)

(b) If(A1), (AS) and (A4) hold, then

E Z1 Z2 = o (n-), (6.1b)

= o(n-) , (6.1c)

E z z2 z3 z24  = o (n-2 ). (6.1d)

(c) If (Al) and (AS) hold, then

n-h

a.2 1 Zt Zt+h 0 O, h E Ao.
t=1

Proof.

(a)

n 2n

n(n - I)E ,2 ~222= E Z 2:5 E 1 .
t=1

t*.

(c)

n-h 6
Ea2 E Zt Zt+h < a;2(n - h) E IZi Z2 1 - O<.

s1---
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(b) By H61der's inequality, Ze Z, l /e, n E 9, thus the sequence

(:C-1 t 2 s uniformly integrable.

Part (c) and (A4) imply that

n-i n-i

t=l t=a

Hence

E- it+i = (n- 1)E Z, 2 -- 0.
$=1

This proves (6.1b). The proofs of (6.1c) and (6.1d) are similar; we only prove

(6.1d):

([n/21 - 1)(n - [n/2]- 1) (E z 1 Z2 Z241

==t= l~fn2]+ t=+1  t=[n/2]+l

In/2]-1 n-I

E Z Z,+I E zi z,+I
/= t --[n/2]@l

[=1 E n 0

t=l t=-[n/2]+l

by (6.1c). 0

7. Proof of Theorem 3.1.

As a structural part of Tn,x(A) we define

t,. := E w. (k) cos A(t- s)
IkI:5m

and prove some asymptotic relations for n -- co.

Lemma 7.1.
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(a)

E C, = 0(1),

Cg o:. (n) to t.
I9471

(b)s
919

(C)

,tc,. =O(n), c, c,,. = o(n), 2,, c. = 0(n')
|t )jPr=1 t,..,.=1lter

Proof (a)

EZcts Wn(k) E Cos Ah(t -s)
t,' IkI<m t,'

- E Wn(k) {( \osAt o + ( sinAkt) 2 } = 0(1).
Ikj:5Mk

(b) E = c=2+n, and the result follows from equation (6.2) of Kliippelbrg

and Mikosch (1992).

(c) Using trigonometric sum formulas we obtain

Zctac Ci Wn W(k 1 ) W. (k2) ZCOSAkI (t- ) COS \ 2 (t-r
tj,rjkl j<m t,s,r

< Wll (kl) W (k2 ) ZCOSAkgtCOSAksZCosAkIsZcosk.r
jkI,jIk21<mI. I

"+J COS Ak1i sin A&2i E cos~k s E sin A&2r
t Sa

"+ ZsinAkltsinAk~tj:sin At, s sin).k r
S a
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+ ZESinAk~tCOSAh,tEsin)LSE COSAk 2r
1

t a r J

<( E~ W. (k1 ) W. (k2)) do n =O(n)
Ikjj,lk~l<_

for some constant do > 0. Furthermore, there exist constants d1 , d2 , 43

such that by (a) and (b)

E CCir = E., o,,+di C'2',+ d2 C,',+ d3 C2
t~isa r l,5,r t t,r t,5

= Ecs.cgt,"+dn +'d 2 ZCsr t+d3  c .

- o(R2))

That the sum c,, c. = 0 (n 2 ) follows similarly. 0
8#a#r#v

We apply Proposition 6.1. and Lemma 6.2. to Tn,x and obtain

.,x((A) = E W.(k) I.,x(Ak)
Ikl<m

= {P-2'E W,,(k)l,0(Ak)12 T7,Z(Ak) (7.1)
Iklj<m
Z EF -v7,• w,(k) R. (Ak) I (I + oPOl)).-

Since max IAk - Al -" 0 as n -+ oo and I1(A)12 is uniformly continuous,
1kj_5m

Max [(m (I k )2- Io(A)121 -0, n - .

Thus we conclude that
T•. W-(k)lj•(Ak)1 2 ,,z(Ak) = (1+o(1))l¢p(A)1 2 > W,(k)i.z(Ak)

=(I + o(j)) o(_)12 (1 + &,(A)),

(7.2)
where

.(A) W• (k) ZcosAk(t -s) , z ..
JJ<m ''
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(- PLemama 7.2. &.(A) -P- 0, n -* oo.

Proof. We prove E (Q,(A)) - 0 as n -. oo: There exist constants di, d2 , d3

such that

&n2(A) = d, c,2 7, , Z + d 2 E c,. c,7 2,2. Zr,

+ d 2 E Cgs cW 2, 2o 191.

and the result follows from Lemmas 6.3. and 7.1. 3
In view of (7.1), (7.2) and Lemma 7.2. it remains to prove that

_t-2

E W, WN(k)R R.(Ah)-0.
Ikl:m

By the decomposition of Proposition 6.1. and by H61der's inequality, we have

for some constant c > 0

121/2 '

+ l, W) +k)Y. (AI

By (7.2) and Lemma 7.2.,

.,z >2 W.(ik) ) , (Ah)12 = > W.(I) I.,z (.•) = OP(1),

Iklim Ikl<m

hence it suffices to show that

7-2., IV./:[. ( £) , •O (7.3)

_fn,z E1 Wn(k) ln(AhL)12 P0.(73IJl<rn

By the decomposition of Proposition 6.1. we have

lYn (Ak)1 2 < 2 (Alk + A2&)

where
2

k a-.2 E 0, e.Ih, Un, (A)
ltl>n
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2

A2 = ak 2 E 0, e-'•A U.,(Ak).

Lemma 7.3. -;y.,3 W,,(k)A•,, 4 O.

Proof. We have for some c < oo

E W.(k) Alk <c (V1 + V2)

where

V, = a-2  W(k) O t e-"% $ Z, e-A~

Ikl_<m ltl>n r=l-t

2

V2 = a; 2 F, W,,(k) 1 ,P-e -iA I,,z(Ak)
hIel_<m l>n I

Note that

/ )2
•,,,z v= < ¢',1 •_, w,(k) Tn,,Z (, e)

\Itl>n Ikl<m

By (A4), it remains to show that V1 P 0. We restrict ourselves to prove that

V, = a;,, E W(k) , E,-,' O Zr ,-,•2

kIm i>n r=l--i

2-- 1 n--f

= a; 2 E Wn(k) z, -"t • -'r - 0.
Ikl5M ft- r=(n+I)^(-A

We have for some positive c

IIV 

/ 2 6/2

m (t=-00 'r=(n+1)A(I-t)



Estimation for infinite variance ARMA models 17

a,, E 1A Izlil
t=-O0 r=(n+I)A(I-t)

-- 1 
n - -t

t=--0

pp

and an application of Markov's inequality proves V11 P-• 0. D

Lemma 7.4. .-,2z E Wn(k) A2k 0.

Ikl<m

Proof. In view of (A4) it suffices to show that 1 W,(k) Am •. 0. We restrict

IklSm
ourselves to show that

I' 2V a;
V3 = E2 • W,(k) IP, e-iA Un, (Ak)

Ik.l<m =1

=an , " W. (k) ZIt O ei-h 1:Z -A - E Z, e- 0.
kIm (1=o

We have for some positive c

ELY314/2 < 0-1• E ', Z l Z
= =l-t I=n--t~

Go

n F,1,1o i
t=-Co

P
Markov's inequality proves V3 - 0. C

Fina,":k ?e combine Lemmas 7.3. and 7.4. which gives (7.3); this proves The-

orem 3.1. 0
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8. Proof of Proposition 4.1.

We mimic the proof of Davis and Resnick (1986), pp. 548-550. For any h E A(

we have
Sn a

SX, Xt+% - 5(h) E x? = 'O • (,P(+h - 5(h)),) Z,_., Z,_j
t=l t=1 1=1 i0j (8.1)

+ -E (h) p,) (Zý,., - Z4) =: V1 + V2
t=1

where we used the fact that O, (O+j - j(h) Oi) = 0. By (AI)-(A3) we obtain

for some ci > 0, i = 1,2,3,4.

Ela;-2 V'I' < ci -;26 •"J1, (0,+h - j(h) V)l'

< c2 na; 2< -. 0,

and

E Ia;2 V121'2 < cs ,a j I, j(,+ - j(h) 0,)1612 jil

< c 4 a -, 0.

By Markov's inequality this implies

a;2 (V1 + V2) 0 0. (8.2)

Furthermore, by Lemma 6.2.

n,.x = 02 7,.•, (I + op(l)).

This, (8.1), (8.2) and (A4) imply that

n n

x. X,+,- 7(h) EX2 x, X,.
t(l 

I=1n-I+1

% . x h ) -~ h =x2x 2 x 2

t=1 t=1
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'a
SXt X9+h

+l = op(l). (8.3)

t E 9
-=1 t=1

In the latter relation we also used (A4) together with the fact thata'

a;.2 E X1X,+t --'P 0foreveryh. 0
t=n-h+l

9. Proofs of the results in Section 5

The proofs in this section are modelled on those in the finite variance case, due

initially to Hannan (1973). [cf. the treatment in Brockwell and Davis (1991),

Section 10.8, which we follow closely]. The technical differences in the infinite

variance case are, however, substantial.

Throughout this section we shall treat only the estimator fl, based on min-

imising an integral of the integrated periodogram. The estimator A., based on

the summed periodogram, can be treated similarly. Unfortunately, as in the

Gaussian case, there seems to be no easy way to exploit the "obvious" asymp-

totic equivalence of &, and &, so as to obtain the consistency and asymptotic

distribution of one directly from the other. Since a full proof of this equivalence

involves treating the differences between the higher order terms in the Taylor

expansions of o,.(/6. -flo) and ( - fo), and this is no easier than deriving

the results for & directly, we refer the reader to the thesis Gadrich (1993),

where essentially the same arguments used below for 6, are applied to/•.

We start with some auxiliary results.

Lemma 9.1. Suppose (Xt)t~z is a causal invertible ARMA(p,q) process and

conditions (AJ)-(A4) hold. Then for every 0 E C

O~n ~[" P 0-2,(,60) 9
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and for cvery 6 > 0

sup kr(e(0) - d,-(%) J_" ' (j I0 (9.2)

where

lip (e-iA)l2

and
, = I.,x(A) dA

Proof. We restrict ourselves to prove that (9.2) is satisfied. The proof of (9.1) is

analogous. We adopt the proof of Proposition 10.8.2 in Brockwell, Davis (1991).

We define

j=o Ikl<S# Ikl< m

where

= + jeiAkg;(A0dA.

Fix c > 0. Then there exists some m E N such that

lq.(A, P) - g-1 (A,0)l < c/(4r)

for all (A,#) E [-T, w] x U. Hence

f) dA _ T.,x(A) dA =/2, VO E V.

Hence for fixed e

p (sup lo,2 (0) _ 0-2(,6,) g(-" AD)dAj > e)(irc fT ((A,0))l >"

T.,x(A)qm(A, )dA - 0((,oo) J( 00)dA

= P (sup 12r hh) (1 _; 02(D) dA
,C 'Yn. 2 .. eA
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:5 Pp 21 O.. (A~~)- 5(h)) (1 _Ifh!) bh 2!'

+P (;p 12vbl, _p-2(#) W (A,#O)dA 2

The first summand on the rhs converges to zero in view of Proposition 4.1.

and because the bh are uniformly bounded for 6 E C and m fixed. The second

summand is zero provided m is chosen sufficiently large ( see p.379 in Brockwell,

Davis (1991)). 0

Proof of Theorem 5.1. We adapt the proof of Theorem 10.8.1 in Brockwell and

Davis (1991). We suppose that #. does not converge in probability to 6o. We

have by Lemma 9.1. that

P(o.,2(P) t) ? P(o,2(0o) <t) -. P(2,r.- 2(,o) t). (9.3)

for every t. By the Helly-Bray theorem and the compactness of C there exists a

non-random subsequence nk such that/6n, converges in distribution to a random

variable P which is different from fo on a set of positive probability. The

functional F(f, z) = f(z) mapping C(U) x C to IZ is continuous where C(C) is

the space of continuous functions on C' equipped with the supnorm. According

to Lemma 9.1 .) converges in probability to tp- 2(.80) f_, !L4fEOdk. Hence

o,2,§ is tight. Since On-. ft the sequence ln, is tight as well. Thus (e n,,j, O-j

is tight in C(U) x U and there exists a further subsequence (we use nk for the ease

of notation) such that (,20 6, ,X.) converges in distribution. By the continuous

mapping theorem we conclude that

Thus we have

p(o.2.. (p.") :_ t) <5 p(,.2., ,(6..) <_ t)
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- P(?-k2(#o) AA(A )dA < t)
ge(AA)

+p(?_2(fo). g(A,0o)dA < t (Af-0)dA > 21, $5 0))
0 6) - 4 (A•,)

+p(,0-2(po) W (AA) dA < t, YA 0 A<2r 0

Choosing 6 close to zero the last summand can be made arbitrarily small. Thus

we conclude that

limsup P(Or.. (#.,) < 0)
h-00

< P(O- 2(#°)2w < t1 D = Do) + P(p- 2 (#°) W 9(AAD) d<-t,# )

_< P(i- 2(jo)2w< t,D = Do) + P(-•2 (jo)2r <t,D # Do) (9.4)

Now choose t = 2w1-2(,0). We obtain from (9.3) and (9.4) that

1 = P(O- 2 (fo)2w < t) < P(O- 2(,o)2r < t, 0 = 0o)

which yields a contradiction since the event {1# Do} has positive probability.

0

Lemma 9.2. Suppose the assumptions of Theorem 5.2. hold. Furthermore, let

q1 be a continuous function on [-ir, r] such that

logI q(,X() g(.%,~,6) T.,z,(A) dA = O,(1), n - oo

Then
( n n,(X)_0- p) ,X D

lo (n ~ (A (To g( , Zo I,X)) q(A) dA -'-ý0.

Proof. Set zn = (n/ log n)'/" and note that a. = cnr/* for some constant c > 0.

By the decomposition of Proposition 6.1. and Lemma 6.2. we get

/ I,,x(A) 7(A)dA = p2-(#o)(l+op(j))j ' - In,x(A)• (A) dA
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S -2 (Ao) (1 + op(1)) , g_(A, g,,(o) q(,X) dA

By the assumptions it suffices to show that

x. f R,,(A) 7(X) dA = op(l).

We apply Holder's inequality and obtain for some c > 0

: e{JI.,z(A) dA)" 2 (1I~AI dA) +jI "(A) 12 dA}

Thus it remains to show that

Z
2 P

We have

Si2

-~ 1 J~I t=1-j

2 2

T j>n 9=1 -Ir i=--

+1 v Ikn , e'i,\ n Z, e'i\t1 dA
i=- t=l=-n-j+

=. -2/o (V, + V2 + V3 + V4).

It suffices to show that the Vi are stochastically bounded. We will show this for

V1 . The other estimates are similar. Note that V1 = f_1 IQ(A)1 2 dA where

-1 ~n-j,Q(A) = zi -

j=-00 t=(n+1)A(1-y)
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Let B, and B2 be two independent Brownian motions on [-v, #] and suppose

that they are independent of (Zi). Then

E e -T v,.f

= E (E (~iC.R(()daA+. z(U)~z~)(Zr))

= E (E (e" ((N(~A2A12 +(:zQA 2) ) (Z-))

= E (E (eir (f N, z

Here N 1 , N 2 are i.i.d. standard Gaussian r.v.'s independent of (Zt).

In order to show stochastic boundedness of V1 it thus suffices to prove that the

real and the imaginary parts of f_, Q(A)dB1 (A) are stochastically bounded. We

restrict ourselves to the real part.

We introduce the gauge function A. for any r.v. A by

A. (A) =- sup P° P(IA I > t) 1-

(t>o

Then for any sequence (ai)iE, of real numbers we have for some constant c. > 0

A: a' z) <c. a , IaiJ A: (Zo)

[see e.g. Kliuppelberg and Mikoech (1991), Lemma 3.4]. Then for fixed e > 0

P C0 E Re ( s(Qs(A) dB, •,g R1dB_

<5 e-*E E up s*P - + I n- Re e-Atj d(A >s) BI)

(S.>0 j=-c t=(n-I1)A(1-j)
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j=oo t=nl)(-j) w< c.,A*(Zo) E RsHe ('i(t))dB 1 (A)a

= c.A(Zo) • EINj° 10,l2 0
j=-oa \t=(n+1)A(1-j)) a

-1
< c •j W,,Ia^l/<OO

Here (Nj) is a sequence of identically distributed (but dependent) Gaussian

r.v.'s and c is a positive constant. In the last step we made use of condition

(A2). This proves the stochastic boundedness of V1. 0

Lemma 9.3. Suppose the assumptions of Theorem 5.2. hold. Furthermore, let

Yj be an odd continuous function on [-w, r] and the Fourier coefficients fk,

Z, of q(A) g (A,i o) satisfy , Jfk I" < oo for some u E (0,1 A a). Then

k=-CO

w 001 0

where Yo, Y1, Y2.... are independent r.v. 's, Yo is positive a/2-sta6fe and (Yg)I eg

are iid symmetric *-stable with ch.f. EeiIYI = e-C.ltI , t E R.

Proof. We adapt the proof of Prcposition 10.8.6 of Brockwell and Davis (1991).

In view of Lemma 9.2. it suffices to show that

z. TI.,z(A) i7(A) g (AX,,6o) dA - 47r 0 - fk
k=! 0

where z,. = (n/logn)l/I. Set

X(A) = i(A) g (A,0o)

and
1 ()

Xin(A)= fk e'A with fk J e x(A) dA.
IkI<_,-~
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The assumptions on (1k) imply that uniformly in A

xrn(A) -~ X(A) = E f IeiAk , M+0
k=-00

Moreover, fo = 0. We show that for all c > 0

jim limaup P (Z.~ I.,Z(A) (X(A) - Xm(A)) > => 0. (9.5)

For n EgHand h E we set jjt 
Z2

53,aZ(h) = 5n,z(IhI) E A,?,Z Z,+11,/zz
t=1 =

and y,, (n log n)i/ Then for n > mn there exists some cl > 0

V, X. nTnz(X) (X(A)-X.(,\)) dA

= ~nf ( jn~z(h) ef 1 ki e'u dA

=zn 2w E in,z(h) fh
m<IhI<n

hm t=1

n-rn-i n-i

=Cl7~~ Yn 2 AZ+
t=i hrn+1

n-rn-i
C= yn,2 ;I A-1 Z

t=i A=m+t+1

Since -t2, d. 72 for some positive a/2-stable r.v. 7f2 for (9.5) it suffices to show

that for every c > 0

jim lim sup P(I V2 1 > C)O=
rn-cc
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An application of Theorem 3.1 of Rosinski and Woyczynski (1987) yields for

some C2 > 0

1 1-n-

P(IV21> C) < C2 n F, E Ih_- 1 + log+ .
t=l h=m+t+l

Note that for z E (0, 1),

0 (1 +log+!) < Zr

where p E (0, 1 A a). Hence for constants C2 , C3 > 0

1 n--m-- n

P (I V21> C) <5 C2- n E Ifh-tI
t=1 h=-m+t+l

1 n CO
<5 C3- E (n - 1) If,'1"<c3 E IftlIP

I=M+l I=M+l

and, by the assumptions, the rhs converges to 0 as m -- oo. This proves (9.5).

Now it remains to show [cf. Proposition 6.3.9 in Brockwell and Davis (1991)]

that

Y3 = ZX. T ,,(A) Xn((A) dA -d 2w E fk YY (9.6)

For n > m we have

V3  = Zn jT (zflz(h) e-AAth[v fk eik dA
_.lhl<- Ikl:5m

= zn 27 E 5n,z(h) fh

lhl~m \ =1

Theorem 3.3 of Davis and Resnick (1986) gives for h > 0

2 -I dIN , Z , Y; , Az,+I,,• Yn z, Z, Z+h - (Yo, V• .... In).
t=l t=1



Estimation for infinite variance ARMA models 28

The specific scaling constants in the statement of the lemma, and in Theorem

5.2, then follow from the representation of the Yi given in Davis and Resnick

(1986) and the results of Le Page (1980).

This together with the continuous mapping theorem proves (9.6). 0

Proof of Theorem 5.2. We adapt the proof of Theorem 10.8.2 of Brockwell and

Davis (1991). A Taylor expansion gives

8o0(.2o) ao. p(,.,) ('6 2 ) fl.(

8910 8,6 8132

= -(f.- o) 0#2

for some #,* with II13* -- II & < [1& --Poll where 11 11 denotes the Euclidean

norm. Now
L920,(32 - Ix 9 2 g- 1 A/3 i

8132(A 0,6 81

and since 13* -P flo similar arguments as in the proof of Lemmas 9.1. yield that

8L2 o2 (0 ) - -fI g (AI,) f .

8,62 Ob-2,o)fJg (Ao) a#2 dA.

Following the lines of the proof in Brockwell and Davis (1991) after (10.8.39)

the same arguments lead to

a2f.2 (#) P 2- (#0) W(20)
082 "-(" o W '"0

Hence it suffices to show that

X o aff2 (00) -d 41-2(13o) Lk bk
k=1

where bk is defined in Theorem 5.2., or, equivalently, by the Cramir-Wold device

that for all vectors c E RP+q

SCT A7-.2 (00) 0 41ro _2(po) YkXn=
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We have

C 42 9(,6) : .x( -(A,)o) dA

=: TI I.,x(A) ,7(A)

where

( cT '9 -' (0, o)

is an odd continuous function. Furthermore, it is not difficult to see that the

Fourier coefficients of q(A) g(A, Po) satisfy the conditions of Lemma 9.3. An

application of this lemma implies that

d. 4w 2(O)E5 Lk fk
zn I i() 7(,\) dA - I1

-= Y

where fik are the Fourier coefficients of q(A) g (A,,60); i.e.

IT e-k T99-1(A,\i
, = - ', i-kA c T -('0°)a# g (A,\6o) d,.

Thus

T 19aT 2 (00) d 0-2090) 0 1T 1  (A,,6 0)
Ofi - -- 41r Yo 2w J-ix aj3 g (A,,80) d-A

for all c E IZP+I. This implies that

8i3 k=1~

where bk is the vector

I TfT  _A 19 8g- 1 (A,\0o) g(,\,6o) dA. 0

10. An application to simulated data

To get some idea of how the Whittle estimator behaves in the heavy tailed

situation, we ran a small simulation study. Before describing the results, we

make some comments about the application of the estimator.
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As noted earlier, in application it is the estimator A, based on the summed

periodograrn, that is used. In fact, whereas until now we worked with the self-

normalized sample periodogram 'ax, in practice it makes more sense to work

with the regular periodogram i.,x(A) defined by

,,.x(A) = In'-E Xle-i•t I, -w < < ir.

In this case, it is immediate from the definition of A. that it could have also

been defined as the minimiser of

S=( (10.1)

where the sum, as before, is taken over all Fourier frequencies. (The difference

between &2€ and 2 lies in factors of n and the normalisation E XJ2, neither of

which affect the minimisation.)

It should be emphasised that minimisation of (10.1) requires knowledge of

neither the stability parameter a nor the scale parameter 0 of the data. (This,

of course, is not true if one wants to determine the convergence rate of the

estimator.) This fact has two important consequences. The first is that although

there exist methods for estimating stable exponents [e.g. Dzhaparidze (1986),

Hahn and Weiner (1991), Hsing (1991) and Koutrouvelis (1980)] none of these

have very good small sample behaviour, and so it extremely comforting to have

an estimator that is a independent.

The second consequence is that vince it is well known that the Whittle esti-

mator is asymptotically equivalent to the MLE in the Gaussian case, the fact

that in the stable case the Whittle estimator is an identical function of the data

implies a robustness property for both the Whittle and maximum likelihood

estimators in the Gaussian case as well.

The following table includes the result of a small scale simulation study. We

generat:fd 100 observations from each of the models

1. :•:-0.4 Xt-i = Zt
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2. X, = Zi + 0.8 ZA-1

3. Xt - 0.4 Xt-, = Zt + 0.8 Zt-1

where the innovations sequence {Zl) was either lid a-stable with a = 1.5 and

scale parameter equal to 2.0, or, for comparison purposes, N(O, 2). (In the

stable case we relied on the algorithm given by Chambers, Mallows and Stuck

(1976) for generation of the innovation process.) We ran 1,000 such simulations

for each model. In the stable example we estimated the ARMA parameters via

the estimator 4, and in the Gaussian case via the usual MLE estimator. The

results were as follows:

Model True Whittle estimate Maximum-likelihood

No. values mean st. dev. mean st. dev.

1 V = 0.4 0.384 0.093 0.394 0.102

2 = 0.8 0.782 0.097 0.831 0.099

3 ý = 0.4 0.397 0.100 0.385 0.106

0 = 0.8 0.736 0.124 0.815 0.082

Table 10.1: Estimating the parameters of stable and normal ARMA

processes via Whittle and MLE estimates.

We shall not attempt to interpret these results for the reader, but merely

point out that the accuracy of the Whittle estimator in the stable case seems

indistinguishable from that of the MLE in the Gaussian case.

Finally, a comment about estimating p, q, a and the scale parameter of the

stable innovations. We have assumed throughout, including in the simulation

above, that p and q are known. When this is not that case, Bhansali (1984,

1988) has proposed a technique for estimating p and q that seems to work well
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in practice. Estimation of a can be done either from the raw data, or from

the residuals calculated after parameter estimation. Limited experience with

simulations indicates that it is best done on the (supposedly iid) residuals.

Appendix

In Theorem 5.1. we proved weak convergence of the estimated coefficient vec-

tor P,. to its true value fo. In the finite variance case this holds even almost

surely. In the infinite variance case (which is e.g. satisfied for Zi E DA(a),

a E (0, 2)) we obtain a.s. convergence under a more restrictive condition if we

take the limit along a well-specified sequence in N. We introduce the following

condition:

(A5) There exists a sequence of positive numbers e. such that

liminf eC"2Z2 = I a.s. (AP.I)

where the norming constants en satisfy the following conditions: There ex-

ist some d > 0 and v E A such that for nk = k", k E .r, F (nk e2 6 + e;J) <00,
k=1

for 6 = I A d, and (eC/e,,) is bounded away from 0 and oo uniformly for

n E Ink, nk+1] for all k E N.

A survey of results of type (AP.1) can be found in Pruitt (1990, p. 1149).

Fristedt and Pruitt (1971) proved under the restriction E ]ZI Id < oo for some

d > 0 that (AP.A) holds with

= loglog n
q=(f log log n/n) (AP.2)

for some constant > I where q(.)= (-logEe-'Z2).

If Z1 E DA(a) for a E (0, 2) we deduce from (AP.2) the following Lemma.

Lemma 1 Suppose F E DA(a), a E (0, 2). Then (A5) is satisfied for d < a

and en =- L(n) for some slowly varying function L. The number v in (A 5)

can be chosen to satisfy v > a/(26 - a) V (a/6) provided 6 > a/2. 0
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The following result complements Proposition 4.1.

Proposition 2 Suppose (Xt),C2 satisfies (Al), (AM) and (A5). Then

5..,,x(h) 5-. (h), h E A, n.- oo

Proof. We use the decomposition of (8.1) and obtain

M.x K l_< • 510i,(0j+j,- (h),P)))I IZ,-, Z,-, I.
t=1 isj

By (Al), (A2) and (AM) we obtain for all > 0

_< ci2 •e•.' -E[k+i< lvii==E

k=1

for some ci, c2 > 0. A Borel-Cantelli argument yields

lim max IVle; 2 =0 a.s.

h-0o niE~nk,na.+iJ

Now to estimate V2 set

f, = O, (Oi+i. - j(h) O,) .

Then

S=
i>0 t=l i<O t=1

= V3 +V 4 •

We restrict ourselves to show that lim e- V3 = 0 a.s., the proof for e 2 V4 is
k-Co 

4

similar. We have
n-i n 0

i= n 9=1-i in ----1 -<i<n 1=1-i <i<n t=n--il

= vs-V6+vT-Vs.
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We restrict ourselves to show that lim e-2 V7 = 0 a.., the proof for Vs, V6 and
--,0o eh

Vs is analogous. Again by (Al), (A2) and (AM) we have

SEIe;j Ve- '2 <_ Ee; JI.,cI'1  IiI < oo
k=1 k=1 i>O

and a Borel-Cantelli argument yields the desired result. Similar arguments show

that
e-2 X; = e-2 ,02EZ; +,•) a.S.

t=I t=1

So we obtain as in (8.3) that

s.,x(h) - i(h) -- 0 a.s. 0

A result similar to Proposition 2 for Zi E DA(p) was obtained by Bbansali

(1988). The following example shows that Proposition 2 is in general not valid

if the subsequence (nk) is replaced by (n).

Ezample. Consider the MA(l) process

xs=t +9zt4e_i, tEA', 181<1,

for a symmetric Zi E DNA(c) for some a E (0, 2). Then as mentioned in Sec-

tion 2 (Al)-(A4) and (A5) are satisfied where (en) can be chosen as

en = l/* (loglogn)(1-/ 2 )/"

Now consider
n--i

VS(z + o A,_1) (z,+ +ozA)
5n,x(l) *= '=

E (z, + 0 z,_-1)
==1

n-I n-I n-I n-1FZz, Z,+l + 0E zS,- Z,+l+ 0EZ2 +92E Z,_1 Z,
t=i t=1 S=I t=i

E Z + 0 2 
FZL,. + 20ZE z,-Z

1=1 1=1t=i



Estimation for infinite variance ARMA models 35

Rosinski and Woyczynski (1987) have shown that for some c > 0

P(ZI Z2 > z)_< C z-° (10+og+ z-1) .

Similar arguments as in the proof of Heyde's SLLN [see Stout (1974)] and the

fact that

imply that

n--1

e;2F(ZtZ,+I + e2 Z, Zt-. + GZtg Zl+1 j
li ra t~0 a .s.n co 0-I

n=-i

9=1

Thus

8+ (1) a.s. (AP.3)

2 + / + Zn/ z+(1)

We shall show that

limsup Zn/n ,2 = 0c a.s. (AP.4)
n-0o /9=

Define

An :={4.2> e 2/a} B n:={ZZ2<n2/a}

then for every c > 0

JP Zn /io. t P (AnfnlBn i-o.).

Note that E P(An) = ooandliminfP(Bn) > 0. Since An and {B 1,B 2 ,.. B.
n=1 n-co

are independent for each n > 1, an application of a standard Borel-Cantelli

lemma [e.g. Petrov (1975), Lemma 5, Section IX.2] yields P (A. n Bn i.o.) > 0,

hence
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P (An B,, i.o.) = I which implies (AP.4). From (AP.3) and (AP.4) we con-

clude that for almost every w there exists a subsequence n' = n'(w) such that

lira Z , Z' ' 00 o.

ft -a /1=1

Hence 0 is an a.s. limit point of n.,X(1). 0

We apply the above Proposition 2 to give an analogous result for o. (fl) and

finally for & and or,2 (0.).

Lemma 3 Suppose (X,),,Z satisfies (Al), (At) and (A 5). Then for every fired

6 > 0, uniformly for 6 E V andfor 6 = 0 and ftE C

p-2(,6 (, go)

where gs and on., are defined as in Lemma 9.1.

Proof. It follows by an adaption of the proof of Proposition 10.8.2 in Brockwell

and Davis (1991) and in view of Proposition 2. 3

This lemma e-id an adaption of the proof of Theorem 10.8.1 of Brockwell and

Davis -1991) imply the following result.

Theorem 4 Suppose (Xt),.z is a causal invertible ARMA(p, q) process and

conditions (Al), (AM) and (A5) hold. Then

f.h + Po and a ( A '2 (o) . 0
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